Project title:	Use of plant defence elicitors to provide induced resistance protection in brassica and allium crops	
Project number:	FV 417	
Project leader:	Nicola Holden, James Hutton Institute	
Report:	Annual report, March 2015	
Previous report:	Annual report 2014	
Key staff:	Nicola Holden Adrian Newton Dale Walters	
Location of project:	<u>Disease system 1 (Brussels sprouts)</u> Two grower sites Fife (Kettle Produce) and Borders (KP Drysdale)	
	<u>Disease system 2 - 5 (broccoli, cabbage,</u> <u>radish, onion)</u> The James Hutton Institute, Errol Road, Invergowrie, DUNDEE, DD2 5DA	
Industry Representative:	 Disease system 1 (Brussels sprouts) Name: Matt Rawson Address: MRR Vegetable Agronomy Ltd, Pasture Farm, West End, Kilham, Driffield, East Yorkshire, YO25 4RR Disease system 2 (broccoli) Name: Alistair Ewan Address: East of Scotland Growers, Prestonhall Industrial Estate, Cupar, Fife, KY15 4RD Disease system 3 (cabbage) Name: Euan Alexander 	

Address: Kettle Produce, Balmalcolm, Cupar, Fife, KY15 7TJ Disease system 4 (radish) Name: Liz Johnson Address: L J Technical Consultancy Ltd, 35 West Fen Road, Ely, Cambridge, CB6 1AN Disease system 5 (onion) Name: Andy Richardson Address: Allium and Brassica Agronomy, Wash Road, Kirton, Boston, Lincs, PE20 1QQ Date project commenced: 01 April 2013 Date project completed 31 March 2016 (or expected completion date):

DISCLAIMER

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

© Agriculture and Horticulture Development Board 2015. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic mean) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or AHDB Horticulture is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights reserved.

The results and conclusions in this report are based on an investigation conducted over a one-year period. The conditions under which the experiments were carried out and the results have been reported in detail and with accuracy. However, because of the biological nature of the work it must be borne in mind that different circumstances and conditions could produce different results. Therefore, care must be taken with interpretation of the results, especially if they are used as the basis for commercial product recommendations.

AUTHENTICATION

We declare that this work was done under our supervision according to the procedures described herein and that the report represents a true and accurate record of the results obtained.

Nicola Holden	
Project lead	
The James Hutton Institute	
Signature NK9 Here	Date20/02/2015
[Name]	
[Position]	
[Organisation]	
Signature	Date
Report authorised by:	
[Name]	
[Position]	
[Organisation]	
Signature	Date
Adrian C Newton	
James Hutton Institute	
Signature	Data 27 th March 2015

Signature

... Date ...27th March 2015.....

CONTENTS

GROWER SUMMARY	1
Headline	1
Background	1
Summary	2
Financial Benefits	3
Action Points	4

S	CIENCE SECTION	5
	Introduction	5
	1. Brussels sprouts	7
	Results	8
	2. Broccoli	15
	Materials and methods	15
	Results	17
	3. Cabbage	19
	Materials and methods	19
	Results	20
	4. Radish	22
	Materials and methods	22
	Results	24
	5. Red onion	28
	Materials and methods	28
	Results	30
	Discussion	.32

© Agriculture and Horticulture Development Board 2015. All rights reserved

Conclusions	35
Knowledge and Technology Transfer	35
References	
Appendices	37

GROWER SUMMARY

Headline

Plant defence elicitors have the potential to aid in the treatment and control of bacterial and fungal diseases of Brassica and Allium species.

Harpin applied on its own is as effective as standard fungicides in controlling bacterial disease of cabbage *Xanthomonas campestris* pv. *campestris* and red onions *Burkholderia gladioli* pv. *alliicola*.

SiTKO-SA also provided a degree of protection against *Burkholderia gladioli* pv. *alliicola* on red onion bulb and Amistar was beneficial for yield on broccoli. However, increased yield in broccoli was coupled with presence of hollow-stem disorder, e.g. for Regalia.

Trials on the Brussels sprout varieties Cobus, Aurelius and Petrus at two sites show that elicitors reduce severity of Light Leaf Spot significantly and two elicitors in particular, Bion® and Regalia®, show the most promise.

Background

Brassica and Allium crops suffer from a number of important fungal and bacterial diseases. Bacterial pathogens are a serious concern because the choice of available control options is very limited. Their effectiveness is influenced by the timing of application, weather conditions and the rate of plant development. Trials were conducted to test whether plant defence elicitors could be used to provide protection against four bacterial and one fungal pathogen in five different horticultural crops for commercially important diseases:

Head rot in broccoli caused by a number of bacteria including *Pseudomonas fluorescens*, *Pseudomonas marginalis* and *Pectobacterium atrosepticum*

Black rot in cabbage caused by Xanthomonas campestris pathovar. campestris (Xcc)

Leaf blight on radish leaves caused by Pseudomonas cannabina pv. alisalensis (Pca)

Soft rot in red onion bulbs caused by Burkholderia gladioli pv. alliicola (Bga)

Light leaf spot on Brussels sprouts caused by the fungus Pyrenopeziza brassicae

The Brussels sprout area in the UK in 2011 was 3,045ha, with the 45,000 tonnes produced having a farmgate value of £41 million (Basic Horticultural Statistics 2012). The disease Light Leaf Spot (LLS) (*Pyrenopeziza brassicae*) is a particular problem in the wetter north of England and in Scotland, and has become established further south in Nottinghamshire and

Lincolnshire. It is estimated that annual losses due to light leaf spot are in the region of 10-15% or around £4-6 million.

Head rot is a major disease of broccoli (*Brassica oleracea* L. var. *italica* Plenck) that can cause 30-100% crop losses, estimated to cost the UK industry £10-15 million annually - up to 30% of the market value (Harling & Sutton, 2002). The disease is caused by the soft rotting bacteria, predominantly *Pseudomonas fluorescens, Pseudomonas marginalis* and *Pectobacterium carotovorum* (Cui & Harling, 2006). Previous work (FV 378) tested whether plant defence elicitors were able to reduce or prevent head-rot symptoms in a broccoli trial and indicated that application of some combinations, including those with Amistar could reduce the incidence of symptomatic disease.

Black Rot (*Xanthomonas campestris* pv. *campestris*) is a major bacterial disease of cabbage throughout the world and can cause significant losses in UK winter cabbage, with Savoy and Savoy x White hybrids particularly susceptible. The disease is thought to be introduced by infected seed and is now endemic in production fields in these areas and although the preventative use of copper and strobilurin fungicides can minimise disease outbreaks there is little that can be done to control established disease. Winter cabbage area in the UK is around 2,900ha, producing around 147,000 tonnes with a farmgate value of £54 million (Basic Horticultural Statistics 2012). It is estimated that severe disease outbreaks in some years can lead to production losses amounting to 15-20% or £7-10 million.

The radish production in the UK is about 5,800 tonnes, with a market value of around £11 million. Approximately 15% of the production is sold as a bunched product, and although radish leaves are not intended for consumption, there has been an increase in demand for radish bulbs sold in bunches with the leaves attached. The presence of bacterial blight and development of scorched-leaf symptoms caused by *Pseudomonas* species renders the crop unmarketable, despite the absence of disease symptoms on the roots. The disease has been observed in crops over the past few seasons particularly during spells of wet weather. It has been estimated that during a high infection period there could be up to 6% losses.

Summary

Trials at two sites (Blackness, Falkirk and Tyninghame, East Lothian) using early, mid- and late-season Brussels sprout varieties Cobus, Aurelius and Petrus demonstrated that the elicitors Bion®, Regalia® and SiTKO-SA reduced light leaf spot severity substantially on leaves and sprouts. Reduction of visible symptoms was as much as 3-fold, although there was some variation depending on the tissue type, variety and geographical location. Of

particular interest was the elicitor Bion[®], which used either on its own, or in combination with the elicitor Regalia[®], gave significant reductions in light leaf spot severity when applied just 3 times during the growing season.

Reproducible positive effects were seen for the elicitors on bacterial diseases. The effects were compared to fungicides that are normally applied to the crops as a means to control fungal pathogens. Harpin applied on its own was as effective as, or more so, than standard fungicides in controlling bacterial disease of cabbage (*Xanthomonas campestris* pv. *campestris*) and red onions (*Burkholderia gladioli* pv. *alliicola*). Glasshouse trials on radish showed a significant reduction in the severity of *Pseudomonas cannabina* pv. *alisalensis* - associated leaf blight symptoms, following application of SiTKO-SA on var. Celesta, whereas Chitosan and Seaweed extract showed some control in polytunnel grown plants. Application of Regalia increased the yield of broccoli, although this was correlated with an increase in hollow-stem disorder.

Most elicitors interacted with fungicides, which means that due consideration needs to be given to the whole system of the crop species, varieties, disease causing agents and environment. For example, Harpin was generally only seen to be beneficial when applied on its own and not when mixed with standard fungicides on cabbage or red onion. The same was true for SiTKO-SA on radish (glasshouse-grown), whereas the opposite effect was seen for chitosan plus seaweed extract on cabbage and red onion. Although fungicides are designed to specifically target fungi and not bacteria, their application alters the microbial community associated with the plants, which may then affect the likelihood of bacterial disease. The effects could be positive, i.e. in some way help to also reduce the pathogenic bacteria, but they may be negative, by removing competition for nutrients from pathogenic fungi, thereby providing pathogenic bacteria the opportunity to grow and cause disease. Therefore, it is anticipated that elicitors will be most useful as part of an integrated disease management programme.

Financial Benefits

Potential financial benefits have not been estimated yet from this project since there is still one more year to run. However, for the bacterial diseases on red onion, cabbage and broccoli, application of some elicitors alone (Harpin, SiTKO-SA, Amistar) appear as beneficial, or more so, than application of standard fungicide regimes for cabbage (Amistar, Nativo, Rudis, Signum), red onion (Dithane NT, Invader, Olympus, Unicur, Valbon), or copper oxychloride for broccoli. This is likely to increase saleable crop and therefore be financially beneficial.

Losses from light leaf spot on Brussels sprouts are thought to account for 10 - 15 % per annum. Under optimal conditions, the average yield of Brussels sprouts in the UK is 8 ton / acre, however, current yields are impacted by effects of disease and climatic events meaning that yields are closer to 6.5 ton / acre. Therefore, application of Bion®, either with or without Regalia®, may contribute to improving current yields resulting in increased profitability.

Action Points

Due consideration must be given to how the various fungicides applied as standard to horticultural crops interact with elicitors, especially for bacterial diseases. One of the major findings of the project so far is that interactions occur between different treatment types (fungicides, elicitors), which inevitably have consequences on the outcome of disease. Therefore an important action is to use our knowledge of the underlying ecology of crops to help improve plant health.

Environmental factors have an important impact on the development of bacterial disease, which was clearly demonstrated by comparing radish grown under glasshouse or poly-tunnel conditions. Furthermore, under the conditions used here, broccoli was not particularly susceptible to head-rot. For both disease-systems, multiple bacteria are involved. Therefore, it is necessary to determine which pathogens are responsible for causing the disease, and whether their complement changes under different environments. This will in turn, allow more targeted applications for control.

4

SCIENCE SECTION

Introduction

This project was initiated to test whether products that have the potential to induce the plant defence response can reduce or prevent symptomatic disease on selected Brassica and Allium crops. The work is a logical extension of two previous projects (FV378, FV393) that assessed the use of elicitors on broccoli and red onion, respectively, and extending to include light leaf spot on Brussels sprouts. This project involves trials on four Brassica: broccoli, radish, cabbage and Brussels sprouts, and one Allium: red onion. One of the key drivers of the project is to test products that either readily available in the UK, or have a good chance of being so (Table 1). For further information on the elicitors used in this study, and in particular on their efficacy against plant diseases, please refer to Walters *et al.* (2013) and Walters *et al.* (2014).

Product & Supplier	Elicitor activity	Current use	Prospects for use	
Amistar	Strobilurin	Brassicas: control of White Blister, Ring Spot, Alternaria	Good	
		Onion and Radish: control of Downy Mildew		
Signum	Strobulurin	Brussels sprouts, cabbage, broccoli and radish: control of Downy mildew	Good	
Bion®	ASM – salicylic	Actiguard (US) Label approved for various	Fair	
(Syngenta)	acid mimic	including Brassicas for Xanthomonas (black rot)		
SiTKO-SA	Salicylic acid	Sold as a fertilizer in the USA. Not currently	Fair.	
(Growth Products USA) and phosphite		sold in UK, but can be shipped.		
Softguard	Chitosan	Sold as a plant health-care or growth	Good	
(Travena, UK)		promoter product (fertiliser) in the UK		
Algal 600 products	Seaweed extracts,	Sold as a nutritional supplement in the UK, often combined with Softguard.	Good	
(Travena, UK)	laminarin			
Harpin	Secreted protein	Sold as a plant health promoter, available	Fair	
(Plant Health Care, USA) derived from hrpN of <i>E.</i> amylovora.		in the UK via Plant Health Care, UK office.		
Reysa /	Knotweed	To be marketed in Europe by Syngenta.	Fair	
Regalia /	extract	Used on range of crops to control wide range of pathogens.		
Milsana		5 . 5		
(Syngenta)				
Companion	Bacillus subtilis	Sold as a liquid biological fungicide in the	Fair	
(Growth Products USA)	GB03	USA. Not currently sold in UK, but can be shipped.		

Table 1	Elicitors used in FV 417	

The work has been divided into five work packages based on the disease system:

1: Light Leaf Spot fungi (*Pyrenopeziza brassicae*) on Brussels sprouts (DW, SAC Commercial Ltd lead)

2: Head rot bacteria (*Pseudomonas fluorescens, Ps. marginalis. Pectobacterium atrosepticum*) on broccoli (NH, JHI lead)

3: Black rot bacteria (*Xanthomonas campestris* pathovar *campestris* - Xcc) on cabbage (NH, JHI lead)

4: Leaf blight bacteria (*Pseudomonas cannabina* pv. *alisalensis* - Pca) on radish (NH, JHI lead)

5: Soft rot bacteria (*Burkholderia gladioli* pv. *alliicola* - Bga) in onion bulbs (NH, JHI lead) In 2013, trials were established for broccoli, cabbage, Brussels sprouts and radish and in 2014, trials were repeated for the bacterial-infected crops plus for red onions. Light leaf spot trials were carried out in 2013 and will be repeated in 2015. The work has been split into five sections for each of the five crops, for ease of reading.

1. Brussels sprouts

The Brussels sprout trials were carried out on two grower sites: Blackness in Falkirk (Kettle) and Tyninghame in East Lothian (Drysdales). Three varieties were used: Cobus (early season), Aurelius (mid-season) and Petrus (late season) and transplants were planted out on 21 May 2013 at Tyninghame and on 24 May 2013 at Blackness.

Treatments included the elicitors Bion®, Regalia®, SoftGuard, Companion®, and SiTKO-SA and the fungicides Signum (BASF), Rudis (Bayer) and Nativo (Bayer). In total, 22 different treatments were applied (summarised in Table 2 and in Table A1.1 of the Appendix for full details of treatment combinations). These treatments were split into the following groups:

Standard fungicide programme (SFP): Signum (end July), Rudis (mid August), Nativo (early September), Signum (end September), Rudis (mid October), Nativo (early November)

Treatment 1: Elicitors applied (singly and in combination) at end July, mid August, early September, end September, mid October, early November

Treatment 2: Elicitors applied (singly) at end July, early September, mid October

Treatment 3: Alternate elicitor and fungicide e.g. elicitor (end July), fungicide (mid August), elicitor (early September), fungicide (end September), elicitor (mid October), fungicide (early November)

Treatment 4: Elicitor combination (various) applied at end July, early September, mid October.

Elicitors were applied at the rates listed in Table 3:

Application rates for the elicitors were those which gave consistent disease control in previous SRUC field work on spring barley, oilseed rape, potato and raspberries. Fungicides were applied at the manufacturers' recommended rate (Table 3).

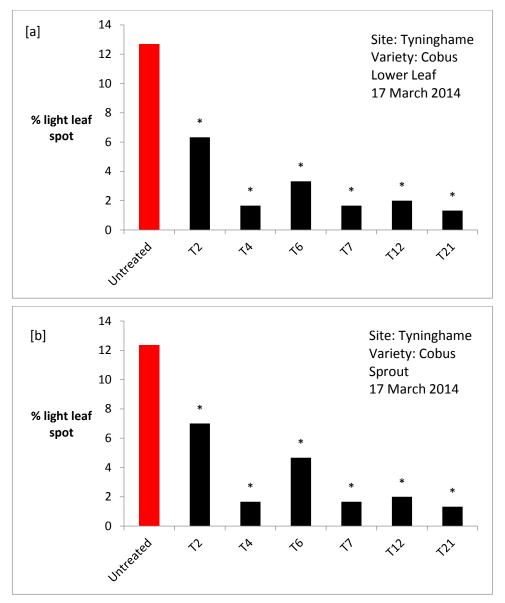
Three plots were used per treatment, with 20 plants per plot in a randomised block design. Treatments were applied randomly to the 22 plots in each block. Light leaf spot assessments were carried out in July, August, September, October, November, December, January, February, and March. Percentage of affected leaf area covered with symptoms of light leaf spot was determined on lower leaves, top leaves and sprouts on 10 randomly selected plants per plot.

Crop	Application and timing in days (date)		Elicitors
Brussels	Plant transplants		∘ Bion
sprouts	Blackness:	24/05/2013 (Y1)	o Regalia
(vars. Cobus, Aurelius,	Tyninghame:	21/05/2013 (Y1)	SoftguardSiTKO-SA
Petrus)	Treatment groups	See text above: 3 groups including Single, Combination, Alternate.	 ○ Companion

Elicitor	Working concentration, application rate
Bion (ASM = 50%)	0.175g/l
Regalia	2.5 kg/ha
SoftGuard	1:500 *
SITKO-SA	5 L / Ha
Companion	6 L / Ha
Tween-20	0.01 %
Activator-90 wetter	0.05 %
Fungicides (main a.i.)	Working concentration
Nativo (trifloxystrobin)	0.4 L / Ha
Rudis (prothioconazole)	0.4 L / Ha
Signum (pyraclostrobin)	1 kg / Ha

* applied to run-off

Results


Year 1 Results:

Crop growth at both sites was uniform. Very little light leaf spot was observed until January 2014 and in both trials, little light leaf spot was detected on the variety Petrus. Levels of light leaf spot on the varieties Aurelius and Cobus varied with site. Thus, light leaf spot severity

was greater at the Tyninghame site than at Blackness. Moreover, varietal differences were observed, since light leaf spot severity on Cobus was consistently greater than on Aurelius. The highest levels of light leaf spot (13 - 14%) were observed on Cobus at the Tyninghame site.

Since many of the treatments applied had no significant effect on light leaf spot severity, only the results from treatments where substantial and significant disease control were achieved are presented.

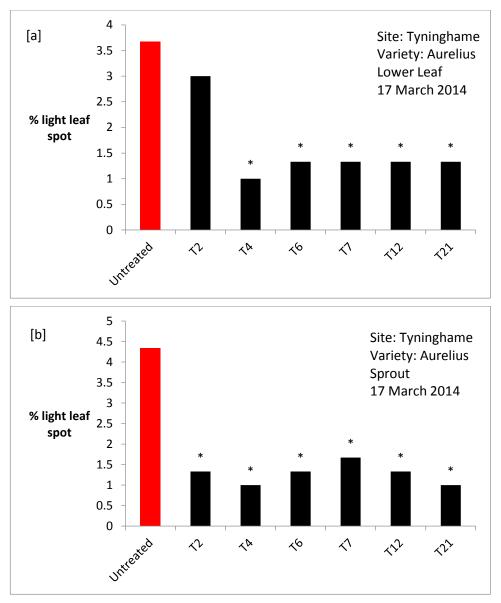
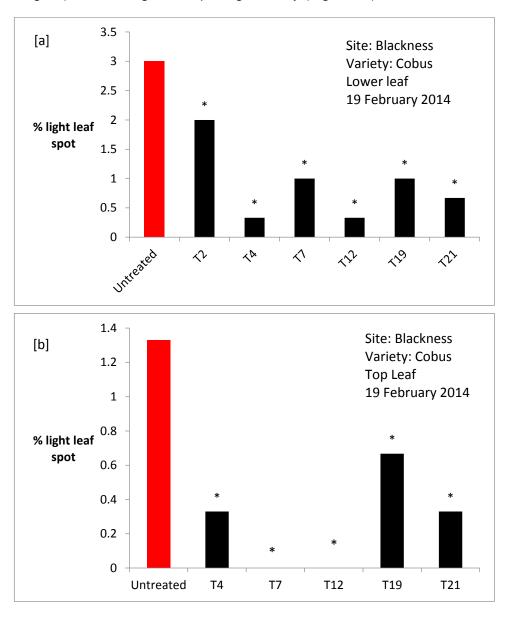
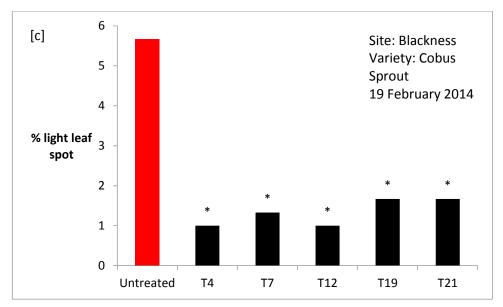

At the Tyninghame site, although the full fungicide programme reduced Light Leaf Spot (LLS) severity on lower leaves and sprouts of the early season variety Cobus significantly, the largest reductions in LLS severity were obtained with treatments containing elicitors (Figure 1). Application of Bion plus fungicides also reduced light leaf spot significantly, although the reduction was no greater than that achieved using the standard fungicide treatment only (data not shown). Of particular interest are treatments T12 (Bion only) and T21 (Bion + Regalia), since here the treatments were only applied 3 times in the season, compared to the usual 6 applications for most other treatments. Significant reductions in LLS severity were also obtained on the mid season variety Aurelius at the Tyninghame site (Figure 2). Again, the best treatments were those containing elicitors, especially on the sprouts, where T4 (Bion + fungicides) and T21 (Bion + Regalia applied 3 times) were particularly effective (Figure 2 b).

Figure 1: Severity of Light Leaf Spot on the Brussels sprout variety Cobus at Tyninghame on 17 March 2014. [a] light leaf spot on lower leaves [b] light leaf spot on sprouts. Treatments shown are:

T2 = fungicide programme ; T4 = alternate Bion + fungicides ; T6 = alternate SiTKO-SA + fungicides; T7 = Bion only - 6 applications ; T12 = Bion only - 3 applications; T21 = Bion + Regalia only - 3 applications

Significant differences at P<0.001 = * (ANOVA)




Figure 2: Severity of Light Leaf Spot on the Brussels sprout variety Aurelius at Tyninghame on 17 March 2014. [a] light leaf spot on lower leaves [b] light leaf spot on sprouts. Treatments shown are:

T2 = fungicide programme ; T4 = alternate Bion + fungicides ; T6 = alternate SiTKO-SA + fungicides; T7 = Bion only - 6 applications ; T12 = Bion only - 3 applications; T21 = Bion + Regalia only - 3 applications

Significant differences at P<0.001 = * (ANOVA)

At the Blackness site, light leaf spot severity was lower than at the Tyninghame site, but here too, the elicitor treatments were most effective. Thus, on lower and top leaves and on sprouts of Cobus, a particularly effective treatment was Bion applied 3 times (Figure 3). On the mid season variety Aurelius, light leaf spot levels were even lower and although many treatments reduced symptom severity, most of these differences were not significant (Figure 4). Exceptions to this were on lower leaves, where treatments 7 (Bion only) and 21 (Bion + Regalia), reduced light leaf spot significantly (Figure 4a).

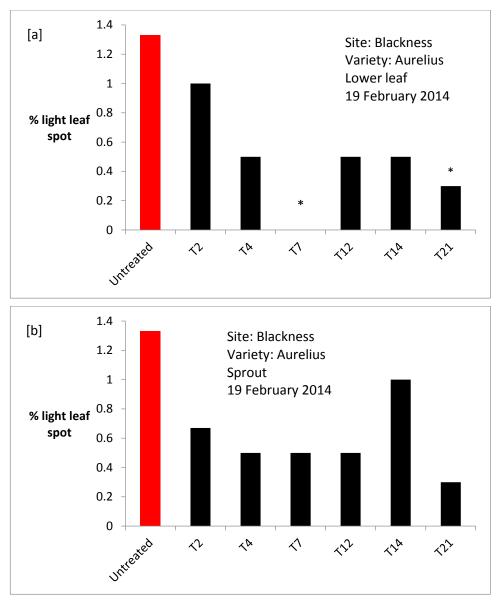


Figure 3: Severity of Light Leaf Spot on the Brussels sprout variety Cobus at Blackness on 19 February 2014. [a] light leaf spot on lower leaves [b] light leaf spot on top leaves [c] light leaf spot on sprouts. Treatments shown are:

T2 = fungicide programme ; T4 = alternate Bion + fungicides ; T7 = Bion only - 6 applications ; T12 = Bion only - 3 applications; T19 = Bion + Companion - 3 applications; T21 = Bion + Regalia only - 3 applications

Significant differences at P<0.001 = * (ANOVA)

Figure 4: Severity of Light Leaf Spot on the Brussels sprout variety Cobus at Blackness on 19 February 2014. [a] light leaf spot on lower leaves [b] light leaf spot on sprouts. Treatments shown are:

T2 = fungicide programme ; T4 = alternate Bion + fungicides ; T7 = Bion only - 6 applications ; T12 = Bion only - 3 applications; T19 = Bion + Companion - 3 applications; T21 = Bion + Regalia only - 3 applications

Significant differences at P<0.001 = * (ANOVA)

There were no results from Year 2 (2014-2015) due to pre-mature harvest at the trial site.

Therefore, the trial will be repeated in Year 3 (2015-2016).

2. Broccoli

Materials and methods

Experimental trials

Experimental field trials for broccoli were established at the James Hutton Institute, Dundee, Scotland. Parthenon was used as a representative variety that is relevant to East Scotland and is susceptible to head-rot. Treatments were tested in replicate plots of three using a randomised design, and 20 replicate plants were assessed per treatment. Broccoli (2013, 2014) was grown in open-ended poly-tunnels on 100 m x 25 m sites in an attempt to control the environmental conditions in order to induce disease. Mist irrigation was used on a time system, 3-times daily for 15 minutes each time. Once the transplants established, growth appeared uniform.

Applications

Elicitors were applied as the sole treatment for broccoli and either applied independently or in conjunction with fungicides for cabbage, radish and onion. The timing of application was dependent on plant development and all treatments were applied with hand-held sprayer. Two applications of elicitors were applied to broccoli at 14-day intervals. The treatment schedules and elicitors used are listed in Table 4 and the application concentrations and rates for elicitors, fungicides and additives are listed in Table 5. Controls included the no-treatment control (NTC), no-bacteria control (NBC) and no-treatment, no-bacteria control (NBNTC); standard fungicide programme (SFP). Additional information on the treatments is provided in Appendix 1 to directly compare all of the different disease systems in FV 417.

Disease was assessed on a 5-point scale from no disease (0) to extensive spread of symptomatic disease over > 60 % of the head (4). Incidence of disease was scored as the presence or absence of any symptoms. Broccoli heads were harvested at maturity (~ 80 days after transplant establishment) and yield determined from fresh weight in Year 1 (stem length was ~ 5 -7 cm below the lower set of florets); and from head width in Year 2. As a direct correlation was found between fresh harvested weight and head width, head width was used a suitable indicator without the need for harvest. Hollow stem disorder was scored as presence / absence. Analysis of variance was carried out using Excel (Microsoft) or Genstat (VSN International) computer programmes.

A bacterial inoculum was applied at 10⁶ cfu/ml by foliar spray, until run-off. Broccoli plants were infected with a cocktail of *Pseudomonas fluorescens, Ps. marginalis* and *Pectobacterium carotovorum* (collectively known as head-rot bacteria). Bacteria were

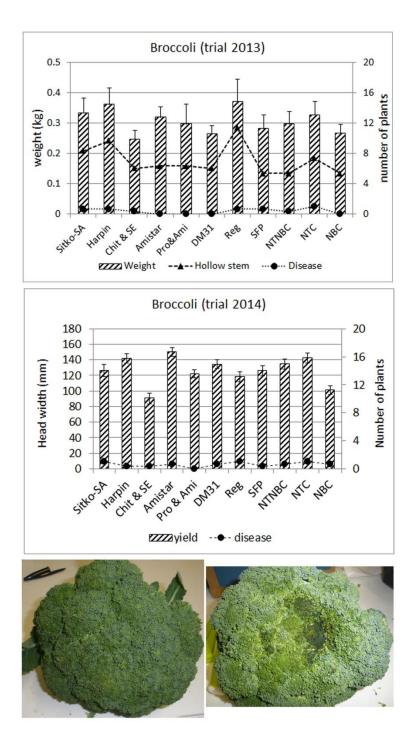
routinely grown initially in rich media (Luria Bertani) at 28°C to saturation. Prior to plant inoculation, they were sub-cultured into defined media (HMM, Hrp Minimal Media for the *Pseudomonas* species and MOPS supplemented with amino acids and g for *Pectobacterium*) designed to optimise expression of virulence factors (at 25 °C). PCR amplification was used to detect pseudomonads (Spasenovski et al. 2009) from inoculated plant material. The potential for head-rot bacteria to cause disease on their respective hosts was verified under laboratory conditions, by firstly surface-sterilising retail broccoli heads with 200 ppm hypochlorite and inoculating directly with bacteria. Symptomatic disease was assessed 7 days, at which point, characteristic soft-rot symptoms became evident.

Crop	Application and timing in days (date)		Elicitors
Broccoli (var.	Plant transplants	Day 0: 21/06/2013 (Y1), 01/06/2014 (Y2)	○ SiTKO-SA○ Harpin
Parthenon)	Treatment 1 (elicitors) Apply bacteria 1 Treatment 2 (elicitors)	39 48 54 58	 Chitosan & Seaweed extract Amistar Probenazole &
	Apply bacteria 2 Disease assessment	80	 Amistar Coded product DM31 Regalia

Table 4 Crops	treatment	schedules	and	elicitors	used.
---------------	-----------	-----------	-----	-----------	-------

Table 5 Concentration of elicitor and fungicide treatments used:

Elicitor / additive	Working concentration, application rate
Bion (ASM = 50%)	1 mM;
Probenazole	0.2 mM
Regalia	4.9 L / Ha
SoftGuard + Algal 600	1:600 *; 1:500
SiTKO-SA	5 L / Ha
ProAct (Harpin)	0.15 kg / Ha
Coded product DM31	
Tween-20	0.01 %
Activator-90 wetter	0.05 %
Fungicides (main a.i.)	Working concentration
Amistar (azoxystrobin)	1 L / Ha
Cuprokylt (copper oxychloride)	5 kg / Ha


* applied to run-off

Results

Application of the head-rot cocktail of bacteria to broccoli resulted in the presence of characteristic soft-rot (Figure 5). The least amount of symptomatic head-rot was seen with application of Amistar, which was also found in previous trials (FV378). The incidence of disease was not sufficiently high to carry out a statistical analysis of the effect of the elicitors. Attempts to increase the likelihood of disease included irrigation with a mist irrigation system to raise the local humidity of the canopy. In addition, in Year 2 (2014) a herbicide, Aramo®, was applied to disrupt the waxy cuticle on the well-developed florets and so provide greater access for the head-rot bacteria. Neither strategy appeared to significantly increase head-rot incidence.

Yield measurements were taken because different treatments appeared to affect head development. Yield varied significantly between treatments and the effect was reproduced in both years (fresh weight of the broccoli heads in Year 1, head width in year 2). The combination of Chitosan and Seaweed extract had the most detrimental effect on yield, although those that increased yield (Harpin, Years 1 & 2 and Regalia, Year 1 tended to be associated with 'hollow stem'.

Phytotoxic damage was observed with application of two of the elicitors (Bion and Regalia) on mature leaves of broccoli. However, the effect was limited to the affected leaf and did not appear to be systemic (not shown).

Top: Yield and number of diseased plants in Year 1 (2013) and Year 2 (2014). The chart shows the average yield (hatched bars) with standard deviation; and symptomatic disease (circles), together with the number of plants showing hollow stem disorder (triangles) for Year 1

Bottom: head-rot symptoms on broccoli heads (Parthenon). An uninfected control (A) compared to plants showing severe symptoms (B).

3. Cabbage

Materials and methods

Experimental trials

Experimental field trials for cabbage were established at the James Hutton Institute, Dundee, Scotland. Treatments were tested in replicate plots of three using a randomised design, and 20 replicate plants were assessed per treatment. Cabbage (2013, 2014) was grown in openended poly-tunnels on 100 m x 25 m sites. Tundra (a Savoy x White cross) was selected as the most relevant variety for the region and one that is susceptible to *Xanthomonas*. Polytunnels allowed for some degree of control over climatic conditions. The crop was irrigated with a mist irrigation system, 3-times daily for 15 minutes each time.

Applications

Elicitors were applied either applied independently or in conjunction with fungicides. The timing of application was dependent on plant development and all treatments were applied with hand-held sprayer. Four applications of elicitors were applied to cabbage at one-month intervals. The treatment schedules and elicitors used are listed in Table 6 and the concentration and application rates of the elicitor, additives and fungicides are listed in Table 7. Controls included the no-treatment control (NTC) and the standard fungicide programme (SFP). Information to allow comparison of the treatments for the different disease systems in FV 417 is provided in Appendix 1.

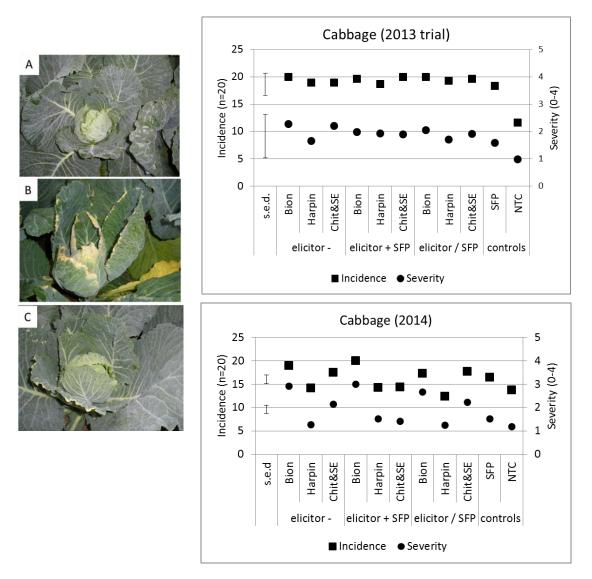
Disease was assessed visually *in situ*: the incidence of symptomatic disease was scored as 'Healthy' or 'Diseased' and the extent assessed on 5-point scale of symptoms, from no symptoms (0) to symptoms across > 60 % leaf (4). Incidence of disease was scored as presence / absence of symptoms. Analysis of variance was carried out using Excel (Microsoft) or Genstat (VSN International) computer programmes.

A bacterial inoculum was applied at 10⁶ cfu/ml by foliar spray, until run-off. Cabbage plants were infected with *Xanthomonas campestris* pv. *campestris* (Xcc). Bacteria were routinely grown initially in rich media (Luria Bertani) at 28 °C to saturation. Prior to plant inoculation, they were sub-cultured into defined media (NYGB, Nutrient Yeast Glucose Broth) designed to optimise expression of virulence factors (at 25 °C). The potential for Xcc to cause disease was verified under laboratory conditions, by firstly surface-sterilising Savoy cabbage leaves with 200 ppm hypochlorite and inoculating directly with bacteria. Symptomatic disease was assessed after ~ 7 days, at which point, characteristic disease symptoms became evident.

Elicitor	Working concentration, application rate
Bion (ASM = 50%)	1 mM
SoftGuard + Algal 600	1:600 * ; 1:500
ProAct (Harpin)	0.15 kg / Ha
Tween-20	0.01 %
Activator-90 wetter	0.05 %
Fungicides (main a.i.)	Working concentration
Amistar (azoxystrobin)	1 L / Ha
Nativo (trifloxystrobin)	0.4 L / Ha
Rudis (prothioconazole)	0.4 L / Ha
Signum (pyraclostrobin)	1 kg / Ha

Table 6 Concentration of elicitor and fungicide treatments used:

* applied to run-off


Table 7 Crops, treatment schedules and elicitors used.

Crop	Application and timing in	Elicitors	
Cabbage	Plant transplants	Day 0: 08/07/2013 (Y1),	∘ Bion
(var. Tundra)	Apply bacteria	08/07/2014 (Y2)	 o Harpin
	Treatment 1 (elicitor +/-	28	 Chitosan &
	Signum)	60	Seaweed extract
	Treatment 2 (elicitor +/- Amistar Top)	91	applied (i) alone; (ii) +
		122	fungicide; (iii) alternating with
	Treatment 3 (elicitor +/- Rudis)	151	fungicide
	Treatment 4 (elicitor +/- Nativo)	122 – 191	
	Disease assessments		

Results

Cabbage inoculated with *Xanthomas campestric* pathovar *campestris* (Xcc) developed characteristic lesions along the leaf margins and small black lesions on the leaves (Figure 6). Elicitors were applied to cabbage, either alone, mixed with and in combination with the standard fungicide program (SFP) or alternating with the SFP. Harpin used in the absence of SFP has a beneficial effect on the level of disease compared to the other two treatments, Bion and Chitosan + Seaweed Extract. Both disease severity (i.e. the extent of symptoms) and incidence (the number of plants showing symptoms) was significantly lower with Harpin application in the 2014 trial. The same effect was also evident in the 2013 trial, but to a lesser and not significant extent. The effect was also seen when the Harpin application was

alternated with the SFP, but not when Harpin was used together with the standard fungicide treatments. A no-bacteria control was not included because cabbage transplants are known to carry a degree of inoculum, indeed disease was observed in the un-infected plants in the guard plots (not shown). It is notable that application of any treatment appeared to induce greater disease symptoms and severity, as the lowest level of disease occurred in the no-treatment control. This may have occurred as a consequence of altering the native microflora through the addition of fungicide treatments.

Figure 6 Cabbage.

Left: Xcc symptoms on cabbage (Tundra) leaves. An uninfected control (A) compared to plants showing severe symptoms (B) or low level of severity (C).

Right: Disease assessment, showing the level of disease severity per treatment for Year 1 (top, 2013) and Year 2 (bottom, 2014). Disease severity was measured on a 0 (no disease) to 5 (maximum disease) scale and the average shown. Disease incidence relates to the number of plants that showed symptoms in each plot (averaged for n=20). The error bar represents the standard error of the difference. Values are provided for the controls (SFP; NTC).

4. Radish

Materials and methods

Experimental trials

Experimental field trials for radish were established at the James Hutton Institute, Dundee, Scotland. Treatments were tested in replicate plots of three in a randomised design, and 20 replicate plants were assessed in the glasshouse per plot, or 40 plants in 1.3 m x 0.25 m plots in the polytunnel. In 2013, radish was grown from seed for four to five weeks in compost, in a glasshouse, at ambient temperature and in 2014, radish was grown from seed in open-ended poly-tunnels on 100 m x 25 m sites at a density of ~ 120 seeds / m². Two varieties were assessed, Celesta and Expo to represent the round roots and the French breakfast style roots, respectively. While Expo can be sold as bunches with the tops still intact, Celesta is normally sold as the edible hypocotyl only.

Applications

Elicitors were applied either applied independently or in conjunction with fungicides for radish. The timing of application was dependent on plant development and all treatments were applied with hand-held sprayer. Two applications of elicitors were applied to radish at 7 days intervals between 7 and 10 days after seedling emergence. The treatment schedules and elicitors used are listed in Table 8 and the application rates and concentrations are listed in Table 9. Controls included the no-treatment control (NTC), no-bacteria control (NBC) and no-treatment and no-bacteria control (NBNTC); standard fungicide programme (SFP). Information to allow comparison of the treatments with other crops is provided in Appendix 1.

Disease was assessed visually for all crops *in situ*: the incidence of symptomatic disease was scored as 'Healthy' or 'Diseased' and the extent assessed on 5-point scale of symptoms. Analysis of variance was carried out using Excel (Microsoft) or Genstat (VSN International) computer programmes.

A bacterial inoculum was applied at 10⁶ cfu/ml by foliar spray, until run-off. Radish plants were infected with *Pseudomonas cannabina* pv. *alisalensis* (Pca) / radish blight bacteria. It should be noted that the isolate indicated as Pca (NCPPB1820, originally classified as *Ps. syringae* pv.*maculicola*) was in fact a different species and 16S sequence analysis indicated closest homology to *Pantoea agglomerans* (strain DSM 3493). Therefore, pathogenic *Pseudomonas* species obtained directly from infected radish plants (supplied by Liz Johnson) were used in the trials. Species identity was confirmed by 16S sequence determination. All bacteria were routinely grown initially in rich media (Luria Bertani) at 28 °C to saturation. Prior

to plant inoculation, they were sub-cultured into HMM (Hrp-minimal media) designed to optimise expression of virulence factors (at 25 °C). PCR amplification was used to detect pseudomonads (Spasenovski et al. 2009) from inoculated plant material. The potential for radish-blight bacteria to cause disease was verified under laboratory conditions, by firstly surface-sterilising leaves of radish plants grown in our glasshouse with 200 ppm hypochlorite and inoculating directly with bacteria. Symptomatic disease was assessed after a defined time 3 - 5 days, after which characteristic disease symptoms became evident.

Elicitor	Working concentration, application rate
Bion (ASM = 50%)	1 mM
Regalia	4.9 L / Ha
SoftGuard	1:600 *
Algal 600	1:500 *
SiTKO-SA	5 L / Ha
ProAct (Harpin)	0.15 kg / Ha
Tween-20	0.01 %
Activator-90 wetter	0.05 %
Fungicides (main a.i.)	Working concentration
Amistar (azoxystrobin)	1 L / Ha
Signum (pyraclostrobin)	1 kg / Ha

Table 8 Concentration of elicitor, additives and fungicide treatments used:

* applied to run-off

Table 9 Crops, treatment schedules and elicitors used.

Crop	Application and timing in	days (date)	Elicitors	
Radish	Sow from seed	03/07/2014 – 10/10/2014	○ SiTKO-SA	
(vars. Celesta and Expo)	Treatment 1 (elicitor +/-	7 – 14*	 o Harpin 	
	Amistar) Apply bacteria Treatment 2 (elicitor +/- Signum)	10 - 17	○ Chitosan &	
		14 – 21	Seaweed extract	
		23 – 35 (varied dependent on growth rate *)	○ Bion	
			○ Regalia	
	Disease assessment		applied (i) alone; (ii) + fungicide	

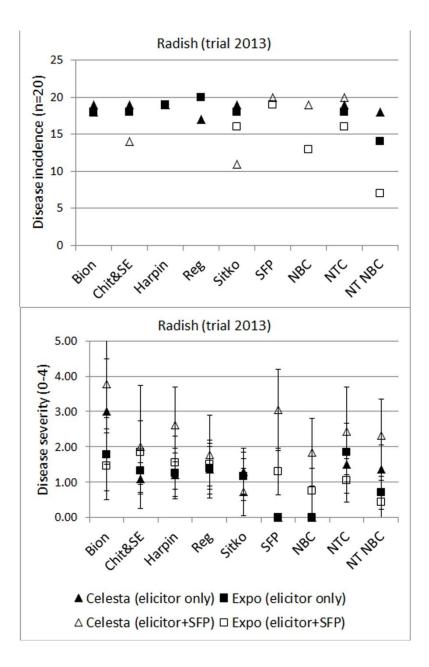
* Timing for treatments and disease assessment was dependent on when the plants were grown: the intervals were of 1 week for plants sown in July and August and 2 weeks for plants sown in September and October, to account for differences in growth rate.

Results

Two sets of trials were established to assess elicitors on radish plants. Glasshouse trials allowed preliminary testing under very controlled conditions in Year 1, and the experiments were then repeated outdoors, in poly-tunnel grown plants in Year 2. Radish leaves spray-inoculated with a cocktail of two pathogenic radish isolates of *Pseudomonas* developed blight-like symptoms on the leaves that in some instances became necrotic (Fig. 7). Elicitors were tested on radish either independently, or incorporated into a fungicide programme.

Disease severity and incidence was extensive on glass-house grown plants (Year 1). The high degree of variation in disease severity meant that there was little in the way of significant variation between the treatments (Fig. 8). In general, greater disease severity was observed in Celesta and the addition of SFP had a negative effect. Application of SiTKO-SA provided the highest level of protection, for both varieties and in the presence or absence of SFP. In contrast, application of Bion had a negative effect for Celesta, less so for Expo. Symptomatic disease occurred on the NBC controls, but this was attributed to spray application in an enclosed glasshouse cubicle with organisms that are known to persist in aerial water droplets for extended periods of time.

Repeating the trial outdoors, in a poly-tunnel (Year 2) markedly reduced levels of disease, despite using the same bacterial inoculum and treatment conditions (Fig. 9). Furthermore, variation was seen between experimental repeats, suggesting that environmental factors played a significant influence on occurrence of disease. However, some similarities to the glasshouse trial were seen: e.g. there were variety-dependent differences in the level of disease (99.9 % confidence); application of Chitosan and Seaweed extract resulted in reduced disease incidence for both varieties; and Bion provided the least protection for Celesta. It should be noted that although the differences between the combination of treatment and variety were not significant to the 95% confidence level, they were marginal at 94.6 %. Regalia provided complete protection for Celesta applied with SFP in contrast to the SFP alone for Celesta (and Expo), indicating that the effect was as a result of the elicitor. SiTKO-SA did not appear to provide any noticeable protection for poly-tunnel grown plants compared to those in the glasshouse.


To confirm that the symptomatic disease was caused by the strains used to inoculate the plants, bacteria were collected from lesions present on symptomatic tissue (Fig. 7). Bacteria were isolated on Pseudomonas-selective medium (Oxoid code CM0559, similar to Kings' A medium) and subject to DNA fingerprinting. A BOX PCR approach was used because it provides a sub-species specific signature based on the presence of repetitive DNA

24

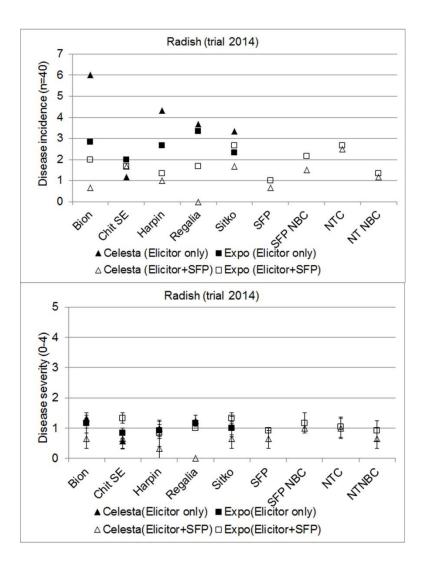

sequences in a particular isolate. The BOX PCR amplicons were compared to the strains used as the inoculum and other library strains. Strains with the same BOX PCR signatures as the inoculum strains were present, proving that the inoculating strains were able to cause symptomatic disease in the field. However, multiple other strains were also recovered, indicating that the lesions contain multiple different pseudomonads. Questions as to which strains are pathogenic and whether any dominate on radish leaves was beyond the scope of this project. However, the occurrence of multiple potentially pathogenic isolates should be borne in mind for antibacterial treatment options.

Figure 7. 'Pca' symptoms on radish (var.Celesta) leaves. Symptoms of low level (A) and high level (B) of disease severity, i.e. 1 and 4 on the disease severity scale. BOX PCR signatures of bacteria recovered from symptomatic lesions (1 to 7) and used in the infecting inoculum (A, B). Those in red letters were distinct from the strains used for inoculation.

Figure 8. Radish disease assessment and severity for Year 1, Glasshouse trial (2013). Disease severity was measured on a 0 (no disease) to 4 (maximum disease) scale. The average severity is shown for elicitor treatments incorporated into the fungicide programme (open symbols) or used independently (closed symbols). Triangles represent var. Celesta and squares var. Expo. The error bar represents the standard error of the difference. Values are also provided for the controls (SFP; NTNBC; NTC; NBC).

Figure 9. Radish disease assessment and severity for Year 2 Polytunnel trial (2014). Disease severity was measured on a 0 (no disease) to 4 (maximum disease) scale. The average severity is shown for elicitor treatments incorporated into the fungicide programme (open symbols) or used independently (closed symbols). Triangles represent var. Celesta and square var. Expo. The error bar represents the standard error of the difference. Values are also provided for the controls (SFP; NTNBC; NTC; NBC).

5. Red onion

Materials and methods

Experimental trials

An experimental field trial for onion was established at the James Hutton Institute, Dundee, Scotland. Treatments were tested in replicate plots of three in a randomised design, and 20 replicate plants were assessed per plot. Onion (2014 only) was grown from seed in an openended poly-tunnel on 100 m x 25 m sites. Poly-tunnels were used to reduce the environmental variability from wind and rain, and the plants were irrigated with a mist irrigation system. Red Onion was selected as it is susceptible to soft rot in the bulbs from bacterial infection.

Applications

Elicitors were either applied independently or in conjunction with fungicides. The timing of application was dependent on plant development and all treatments were applied with a handheld sprayer. Applications of elicitors were applied to onion at 9 days intervals, 11 weeks after sowing, after development of four to five true leaves. The treatment schedules and elicitors used are listed in Table 10 and the rates and concentrations are listed in Table 11. Controls included the no-treatment control (NTC), no-bacteria control (NBC) and no-treatment, no-bacteria control (NBNTC); standard fungicide programme (SFP). Additional information on the treatments is provided in Appendix 1 to allow comparison with other disease systems used in FV 417.

Disease was not assessed visually for onion bulbs because it is not always an obvious measure of bacterial infection as bulbs can carry a relatively high inoculum without showing visible symptoms. Instead, the bacteria were quantified from onion bulb cores post-storage. Analysis of variance was carried out using Excel (Microsoft) or Genstat (VSN International) computer programmes.

A bacterial inoculum was applied at 10⁶ cfu/ml by foliar spray, until run-off. Onion plants were damaged to mimic damage from hail stones by scrapping the leaves lightly with a plastic comb, and infected with *Burkholderia gladioli* pathovar *allicola* (Bga). Bacteria were routinely grown initially in rich media (Luria Bertani) at 28 °C to saturation. Prior to plant inoculation, they were sub-cultured into defined media (MOPS supplemented with glycerol and amino acids) designed to optimise expression of virulence factors (at 25 °C). The potential for Bga to cause disease on red onion bulbs was verified under laboratory conditions, by firstly surface-sterilising purchased onion bulbs with 200 ppm hypochlorite, and stab-inoculating

with bacteria. Symptomatic disease was assessed after 7 days, at which time, characteristic disease symptoms became evident on the onion scales.

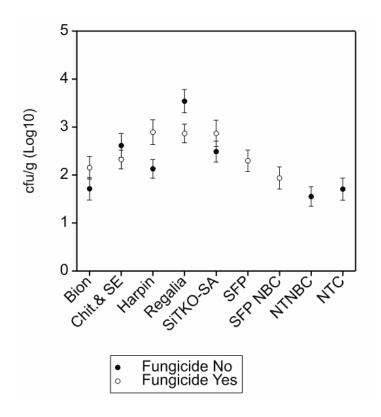
Elicitor	Working concentration, application rate
Bion (ASM = 50%)	1 mM;
Regalia	4.9 L / Ha
SoftGuard	1:600 *
Algal 600	1:500 *
SiTKO-SA	5 L / Ha
ProAct (Harpin)	0.15 kg / Ha
Tween-20	0.01 %
Activator-90 wetter	0.05 %
Fungicides (main a.i.)	Working concentration
Dithane NT (mancozeb)	2.5 kg/ Ha
Invader (mancozeb)	2.5 kg/ Ha
Olympus (azoxystrobin)	2.5 L / Ha
Unicur (fluoxastrobin)	1.25 L / Ha
Valbon (mancozeb)	1.6kg / Ha

 Table 10 Concentration of elicitor and fungicide treatments used:

* applied to run-off

Crop	Application and timing in days (date)		Elicitors	
Onion	Sow seeds	19/03/2014 (Y2)		
(var. Red Baron)	Treatment 1 (elicitor +/- Olympus)	77	∘ Bion	
	Treatment 2 (elicitor +/- Unicur, Dithane)	86	○ SiTKO-SA	
	Treatment 3 (elicitor +/- Valbon)	95	○ Harpin	
	Treatment 4 (elicitor +/- Unicur,	104	 Chitosan & 	
	Dithane)		Seaweed extract	
	Apply bacteria	111	○ Regalia	
	Treatment 5 (elicitor +/- Valbon)	114		
	Treatment 6 (elicitor +/- Unicur)	121		
	Treatment 7 (elicitor +/- Invader)	161		
	Treatment 8 (elicitor +/- Invader)	140		
	Harvest and heat treat	161		
	Cold store	182		
	Biomass and disease assessment	210		

Results


Red onion was grown in a polytunnel from seed to maturity. Elicitors were applied either independently or incorporated into a standard fungicide programme. A bacterial inoculum of Bga was applied mid-way through the treatment schedule, between treatments # 4 and 5 (out of a total of eight), following light damage applied to the leaves, by scraping. Bulbs were harvested, set to prevent bolting (28 °C for three weeks), and cold stored (1-3 °C for 4 weeks) prior to the bacterial load being assessed. Visual disease was not used for the assessment because it can be subjective and is not always a measure of bacterial infection. However, disease was apparent and extensive, such that it was not possible to harvest some individual plants (Fig. 10). Soft rot and the accompanying characteristic smell were apparent during storage and sampling.

Application of elicitors significantly affected the bacterial load. Application of Harpin or Bion alone reduced the levels of bacteria to that seen in the standard fungicide programme (SFP) (Fig. 11). Once again, there was an interaction between the elicitors and fungicides, such that inclusion of Harpin or SiTKO-SA with SFP increased the number of bacteria significantly compared to the SFP control. Application of Chitosan and Seaweed extract or Regalia alone significantly increased the bacterial load, although this effect was reduced with the inclusion of SFP. *Burkholderia* was also present in the NBC control plants. We think that this organism, like the pseudomonads, is able to persist in water droplets, where it can infect other plants via drift. It was also noted that as with cabbage, the process of treatment application appears to encourage infection.

Figure 10. Red Onion (var. Red Baron)

Various levels of symptomatic disease at the point of harvest (A, B) and after heat set and storage (C, D).

Figure 11 The average number of Bga bacteria recovered from treated plants (n=20 x 3 reps), expressed as cfu per gram of fresh tissue, with the standard error bars shown. The values for the elicitors are presented in the absence (filled circles) or presence (empty circles) of the SFP, here termed 'Fungicide'. Values are also provided for the controls (SFP; SFP NBC; NTNBC; NTC;). The limit of detection in this assay is ~ 1.25 Log₁₀ cfu/g.

Discussion

The effect of elicitors was tested on cabbage, radish broccoli plants and onions bulbs infected with phytopathogenic bacteria, and on naturally light leaf spot-infected Brussels sprouts. Some elicitors had a beneficial effect in reduction of bacterial disease symptoms in radish, cabbage and onion, and on fungal symptoms in sprouts. It is notable that different elicitors were effective for each disease system (Harpin for cabbage and onion, Chitosan and Seaweed extract for radish, Bion (and others) for sprouts), indicative of specificity in their effect. Interactions occurred between elicitor treatments and standard fungicides for the bacterial infections. It is possible that the fungicides affect the plant response, the native microbiota or a combination of both, which in turn alters the ability of the bacteria to colonise and cause disease. In addition, variety also appeared to have an effect on elicitor treatment in radish plants (Celesta vs Expo). Furthermore, application of elicitors affected broccoli yield, although those treatments that showed the highest yield also suffered from the highest incidence of hollow stem, a disorder associated with rapid growth and prone to stem rot.

Symptomatic disease was rare on broccoli, despite the addition of head-rot bacteria that were grown under disease-inducing conditions (in Hrp-minimal medium, to induce expression of bacterial virulence factors). Since the bacteria were able to cause symptomatic disease under laboratory conditions, it is most likely that the environmental conditions were not conducive for disease, in this case. Attempts that were made to increase to disease incidence including use of a polytunnel with mist irrigation and application of a de-waxing agent, did not appear to be successful. It is also possible that other microbes associated with the plants were able to compete with the head-rot bacteria. Similarly, multiple pseudomonads were recovered from lesions in radish leaves, for polytunnel grown plants. Together, this suggests that a multitude of causative organisms can be responsible for diseases associated with opportunistic pathogens. In contrast, Xcc and Bga are thought to have a relatively narrow host range and demonstrate much more specificity towards cabbage and onion, respectively.

On Brussels sprouts, it was encouraging to see that several elicitor treatments reduced light leaf spot severity significantly. The standard fungicide programme also reduced light leaf spot severity, but not always significantly and in the data shown in this report, several elicitor treatments consistently out-performed the fungicide treatment. Of particular interest is effect of treatments containing Bion® on its own, and Bion® combined with Regalia®, both applied just three times in the season, and yet providing very good control of light leaf spot. Bion® is known to control diseases on a range of crops and is used commercially in various parts of the world (Walters et al., 2013; 2014). In other work at SRUC, Bion® has been shown to provide effective control of diseases on various crops e.g. root rot on raspberry and clubroot on cabbage and winter oilseed rape (Walters, unpublished results), although it was less effective at controlling foliar diseases on spring barley. Interestingly, on spring barley and winter oilseed rape, more effective disease control was provided by a combination of elicitors, including Bion® (Walters et al., 2011; 2012; 2014). It would be useful to determine the effects of these treatments on clubroot severity, since on-going work at SRUC has demonstrated highly significant effects of Bion and Regalia treatments (separately) on clubroot development on winter oilseed rape. On Brussels sprouts, it seems likely that in treatments involving a combination of Bion® and Regalia®, the major disease suppressing effect is the result of resistance induced by Bion®, since Regalia applied on its own had little effect on light leaf spot severity.

In line with work on other crops (e.g. Walters et al., 2011), differences were observed in varietal responses to the elicitor treatments. If elicitors are to be used to control light leaf spot on Brussels sprouts, it will be important to determine the responsiveness of particular varieties to the elicitor of choice.

Harpin is a protein derived from the secreted protein HrpN (from *Erwinia amylovora*), which acts as a virulence factor once it enters the plant tissue (Wei *et al.*, 1992). It is delivered by the type 3 secretion system, a mechanisms to inject manipulative 'effector' proteins into the plant cell by the bacterium. The protein belongs to a conserved family of haprin proteins in phytopathogenic bacteria. Their main role is as translocators, to facilitate delivery of effector proteins into host cells, although they have other functions and can be perceived as MAMPs (microbe-associated molecular pattern) by the plant (Choi *et al.*, 2013). Importantly, harpins from a number of diverse pythoathogenic bacteria have been shown to elicit a defence response. In our trial, application of Harpin conferred protection in multiple disease systems: Xcc in cabbage and Bga in onion. In addition, proteins of the harpin family have been shown to promote plant growth, which may explain the effect observed in broccoli.

SiTKO-SA contains a combination of salicylic acid (SA) and phosphite. There is a reasonable body of work reporting some success using salicylic acid mimics in experimental field trial, for example, the use of ASM in the control of bacterial phytopathogens in orchard trees, lettuce, broccoli and tomato (Pajot and Silue 2005; Graham and Myers 2011; Yigit 2011; Balajoo *et al.* 2012). Furthermore, phosphite has also been shown to induce systemic resistance (Lobato et al. 2011). These studies support the hypothesis that the reduction of Pca symptoms on radish and light leaf spot on Brussels sprouts may be as a direct result of SiTKO-SA- / ASM-mediated induced defence. Chitosan has been well characterised as an elicitor of plant defence as various forms of the polymer are found in fungal cell walls and are recognised by the plant as PAMPs (Trouvelot *et al.*, 2014). Chitosan triggers an alternative defence pathway, through jasmonic acid, which is required for recognition of nectrotrophic pathogens. However, there is feedback and cross-over into other pathways, which may explain the beneficial effect on opportunistic pseudomonads on radish leaves.

Regalia is an extract of giant knotweed (*Reynoutria sachalinensis*) and although its mode of action is unclear, it is thought to induce multiple defence pathways in the host plant. It is recognised to have pharmaceutical properties and has been shown to induce phytoalexins which may aid in the control of fungal pathogens (La Torre *et al.* 2004; Peng *et al.* 2013). It is interesting that it had a significant growth effect on broccoli, although this was coupled with a trade-off in the incidence of hollow stem disorder, an undesirable property for producers that can also lead to stem rot.

The finding for Harpin in particular is extremely encouraging for the treatment of bacterial pathogens of horticultural crops, but more work is required to better understand the interaction with fungicides and how best to use Harpin alongside other pathogen control treatments.

Conclusions

We have found that application of Harpin on its own is as effective as standard fungicides in controlling bacterial disease of cabbage and red onions, and it had a positive effect on broccoli yield. Furthermore, significant control of light leaf spot, at both Tyninghame and Blackness, was demonstrated on early and mid-season varieties of Brussels sprouts using elicitors. Bion® and a combination of Bion® and Regalia® were found to be particularly effective when applied just 3 times during the season. Other elicitors that provided a degree of protection against opportunistic pathogens were chitosan and seaweed extract for radish (especially those grown in a glasshouse), and Amistar was beneficial for broccoli yield .

It was notable that there appeared to be specificity in the response to elicitor application, and interactions with other factors such as fungicides, plant variety and growth conditions. This indicates that due consideration must be given to the whole system: plant, disease agents, treatment strategies (nutrition and pesticides) and environment in order to best promote plant health.

Knowledge and Technology Transfer

British Soil Society, soil amendment meeting, 30/05/2013, SRUC, Edinburgh. Presentation "Microbial bioeffectors: boosting induced resistance in horticultural crops", Holden. ...

Brassica Growers Association meeting, 29/01/2014, Ingliston, Edinburgh. Presentation "Using elicitors to control Brassica diseases", Holden.

BGA annual meeting, 21/01/2014, Lincoln. Presentation, Self-help for brassicas: helping plants to help themselves, Walters.

Crop Protection in Northern Britain 2014 meeting, 25/02/2014, Dundee. Presentation and conference proceedings entry "Application of plant defence elicitors to control bacterial pathogens on horticultural crops", Holden.

Dundee Food and Flower Festival, 05/09/2014, Dundee. Interactive stall "Putting microbes on the table", Holden

Vegetable Consultant Association annual meeting, 01/12/2014, Stilton. Invited presentation, "Plant Defence Elicitors to Control Brassica Pathogens", Holden

UK Brassica and Leafy Salad Conference, 28/01/2015, Peterborough. Presentation, 'Control of light leaf spot on Brussels sprouts using resistance elicitors'. Walters.

References

Balajoo, OM, Kesahavarzi, M, Zahabi, A, Danesh, YR, Haghjuyan, R. (2012) Protective effect of Acibenzolar-S-Methyl on fireblight severity in quince and characterization of the *Erwinia amylovora* strains involved. *Journal of Plant Pathology* **94**: 211-214

Choi, M.S., Kim, W., Lee, C., Oh, C.S. (2013). Harpins, multifunctional proteins secreted by Gram-negative plant-pathogenic bacteria. *Molecular Plant-Microbe Interactions* 26, 1115-1122.

Cui X, Harling R. (2006) Evaluation of bacterial antagonists for biological control of broccoli head rot caused by *Pseudomonas fluorescens*. *Phytopathology* **96**: 408.

Graham JH, Myers ME (2011). Soil application of SAR inducers Imidacloprid, Thiamethoxam, and Acibenzolar-S-Methyl for citrus canker control in young grapefruit trees. *Plant Disease* **95**: 725-728

Harling R, Sutton M. (2002). Spear rot of Calabrese (AHDB Horticulture).

La Torre A, Spera G, Lolleti D (2004). Activity of natural products against courgette powdery mildew. *Communications in Agriculture and Applied Biological Sciences* **69**: 671-678.

Lobato MC, Machinandiarena MF, Tambascio C, Dosio GAA, Caldiz DO, Daleo GR, Andreu AB, Olivieri FP (2011). Effect of foliar applications of phosphite on post-harvest potato tubers. *European Journal of Plant Pathology* **130**: 155-163.

Oxley SJP, Walters DR (2012) Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection 40, 59-62.

Pajot E, Silue D (2005). Evidence that DL-3-aminobutyric acid and acibenzolar-S-methyl induce resistance against bacterial head rot disease of broccoli. *Pest Management Science* **61**: 110-1114.

Peng W, Qin R, Li X, Zhou H (2013). Botany, phytochemistry, pharmacology, and potential application of *Polygonum cuspidatum* Sieb.et Zucc.: a review. *Journal of Ethnopharmacology* **148**: 729-745.

Spasenovski, T, Carroll, MP, Payne, MS, Bruce, KD (2009). Molecular analysis of diversity within the genus Pseudomonas in the lungs of cystic fibrosis patients. *Diagnostic Microbiology and Infectious Diseases* **63**: 261-267

Trouvelot S, Héloir M, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Tdra L, Daire X, Adrian M. (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. *Frontiers in Plant Science* **5**: 00592

Yigit, F. (2011). Acibenzolar-S-methyl induces lettuce resistance against *Xanthomonas* campestris pv. Vitians. African Journal of Biotechnology **10**: 9606-9612

Walters DR, Havis ND, Paterson L, Taylor J, Walsh DJ (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease 95, 595-600.

Walters DR, Ratsep J, Havis ND (2013). Controlling crop diseases using induced resistance: challenges for the future. *Journal of Experimental Botany* **64**, 1263-1280.

Walters DR, Havis ND, Paterson L, Taylor JD, Walsh DJ, Sablou C (2014). Control of foliar pathogens of spring barley using a combination of resistance elicitors. Frontiers in Plant Science 5:241. doi:10.3389/fpls.2014.00241.

Walters DR, Newton AC, Lyon GD (2014). *Induced Resistance for Plant Disease Control: a sustainable approach to crop protection.* Second Edition. Wiley-Blackwell.

Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV. (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen *Erwinia amylovora*. *Science*. **257**:85-88.

Appendices

Appendix 1: Additional information on crop systems and treatments:

Table A1.1	(Brussels sprouts)
------------	--------------------

Brussels sprouts		
Varieties:	Cobus, Aurelius, Petrus	
	Planted from transplants (May)	
Fungicides:	Signum (BASF), Rudis (Bayer), Nativo (Bayer)	
Elicitors:	Bion®, Regalia®, SoftGuard, Companion®, SiTKO-SA	
Standard fungicide programme (SFP):	Signum (end July), Rudis (mid August), Nativo (early September), Signum (end September), Rudis (mid October), Nativo (early November)	
Treatment 1:	Elicitors applied (singly and in combination) at end July, mid August, early September, end September, mid October, early November	
Treatment 2:	Elicitors applied (singly) at end July, early September, mic October	
Treatment 3:	Alternate elicitor and fungicide e.g. elicitor (end July) fungicide (mid August), elicitor (early September), fungicide (end September), elicitor (mid October), fungicide (early November)	
Treatment 4:	Elicitor combination (various) applied at end July, early September, mid October	
light leaf spot assessments	July, August, September, October, November, December January, February, March	

Table A1.2 Treatments applied to Brussels Sprout	Table A1.2	Treatments a	pplied to	Brussels	Sprouts
--	------------	--------------	-----------	----------	---------

Trts	Mid July	End July	Mid Aug	Early Sept	Late Sept	Mid Oct
1	Untreated					
2	Signum 1kg/ha		Rudis 0.4l/ha	Nativo 0.4kg/ha	Signum 1kg/ha	Rudis 0.4l/ha
3		Regalia 2.5kg/ha	Rudis 0.4l/ha	Regalia 2.5kg/ha	Signum 1kg/ha	Regalia 2.5kg/ha
4		Bion 0.175g/l	Rudis 0.4l/ha	Bion 0.175g/l	Signum 1kg/ha	Bion 0.175g/l
5	i	Softguard 10m ls/5l	Rudis 0.4l/ha	Softguard 10m ls/5l	Signum 1kg/ha	Softguard 10m ls/5l
6	i	SiTKO-SA 51/ha	Rudis 0.4l/ha	SiTKO-SA 5l/ha	Signum 1kg/ha	SiTKO-SA 51/ha
7		Bion 0.175g/l	Bion 0.175g/l	Bion 0.175g/l	Bion 0.175g/l	Bion 0.175g/l
8		Regalia 2.5kg/ha	Regalia 2.5kg/ha	Regalia 2.5kg/ha	Regalia 2.5kg/ha	Regalia 2.5kg/ha
9		Softguard 10m ls/51	Softguard 10m ls/5l	Softguard 10m ls/5l	Softguard 10m ls/5l	Softguard 10m ls/5l
10		Companion 6l/ha	Companion 6l/ha	Companion 6l/ha	Companion 6l/ha	Companion 6l/ha
11		SiTKO-SA 51/ha	SiTKO-SA 5l/ha	SiTKO-SA 5l/ha	SiTKO-SA 5l/ha	SiTKO-SA 5l/ha
12		Bion 0.175g/l		Bion 0.175g/l		Bion 0.175g/l
13		Regalia 2.5kg/ha		Regalia 2.5kg/ha		Regalia 2.5kg/ha
14		Softguard 10m ls/5l		Softguard 10m ls/5l		Softguard 10m ls/51
15	i	Companion 6l/ha		Companion 6l/ha		Companion 6l/ha
16	i	SiTKO-SA 51/ha		SiTKO-SA 5l/ha		SiTKO-SA 5l/ha
17		Softguard 10m ls/5l + Companion 6l/ha		Softguard 10m ls/5l + Companion 6l/ha		Softguard 10m ls/5l + Companion 6l/ha
18		Regalia 2.5kg/ha + Companion 6l/ha		Regalia 2.5kg/ha + Companion 6l/ha		Regalia 2.5kg/ha + Companion 6l/ha
19		Bion 0.175g/l + Companion 6l/ha		Bion 0.175g/l + Companion 6l/ha		Bion 0.175g/l + Companion 6l/ha
20		SiTKO-SA 5l/ha + Companion 6l/ha		SiTKO-SA 5l/ha + Companion 6l/ha		SiTKO-SA 5l/ha + Companion 6l/ha
21		Bion 0.175g/l + Regalia 2.5/ha		Bion 0.175g/l + Regalia 2.5/ha		Bion 0.175g/l + Regalia 2.5/ha
22		Regalia 2.5kg/ha + SiTKO-SA 5I/ha		Regalia 2.5kg/ha + SiTKO-SA 5l/ha		Regalia 2.5kg/ha + SiTKO-SA 5l/ha

Table A2 (broccoli)

Broccoli	
Varieties:	Parthenon
	Planted from transplant early May
Fungicides:	Fungicides are not routinely applied to broccoli
Elicitors:	SoftGuard & Algal600, SiTKO-SA, Harpin, Amistar (applied singly and in combination)
Standard fungicide programme (SFP):	Amistar & Cuprokylt at head initiation and 14 days later
Treatment 1:	Elicitors applied three times in ~ 10-day cycle mid June, late June and early July.
	Bacterial inoculum applied mid and late June
Head-rot assessments	July

Table A3 (cabbage)

Cabbage	
Varieties:	Tundra
	Planted from transplant early July
Fungicides:	Amistar Top, Rudis, Nativo
Elicitors:	SoftGuard & Algal600, Harpin, Amistar, Bion (applied singly and in combination)
Standard fungicide programme (SFP):	Signum, (Aug) Amistar Top (Sept), Rudis (Oct), Nativo (Nov)
Treatment 1:	Elicitor only, applied four times in place of SFP (Aug, Sept, Oct, Nov)
Treatment 2:	Elicitor + fungicide: elicitors included in SFP (above)
Treatment 3:	Elicitor alternating with fungicide: i.e. elicitor (Aug), fungicide (Sept), elicitor (Oct), fungicide (Nov)
Black-rot assessments	Sept - Dec

Table A4 (radish)

· · · · · · · · · · · · · · · · · · ·	
Radish	
Varieties:	Expo, Celesta
	Planted from seed as required (April – Oct)
Fungicides:	Amistar, Signum
Elicitors:	SiTKO-SA, Harpin, Softguard+Algal 600, Bion, Regalia (applied singly and in combination)
Standard fungicide programme:	Amistar 7 (Summer) / 14 (Spring) days, Signum 14 (Summer) / 21 (Spring) days
Treatment 1:	Elicitor only, applied (singly) at 7 (Summer) / 14 (Spring) and 14 (Summer) / 21 (Spring) days

	Bacteria applied at 10 (Summer) / 17 (Spring) days
Treatment 2:	Elicitor + fungicide: elicitors included in SFP (above)
Blight assessments	At 23 days (Summer) / 35 days (Spring)

Table A5 (onion)

Onion	
Varieties:	Red Baron
	Planted from seed (April)
Fungicides:	Olympus, Unicur + Dithane NT DF, Valbon, Invader
Elicitors:	Bion, Chitosan and Seaweed Extract, Harpin, Regalia, SiTKO-SA
Standard fungicide programme:	Applied every 9 days 15 weeks post seeding: (1) Olympus; (2) Unicur + Dithane NT DF; (3) Valbon; (4) Unicur + Dithane NT DF; (5) Valbon; (6) Unicur; (7) Invader; (8) Invader
Treatment 1:	Elicitors only in place of SFP
Treatment 2:	Elicitors plus SFP
Assessments	Bacterial load post cold storage (Nov)